Controllable Inflatable Aeroshell

Mario Coppola

Tijs de Boer

Wouter Dalmeijer

Rick van Loo

Alex Minich

Chris Möckel

Ibrahim Ouerghi

Surush Shabazi

Ren Smis

Erwin van Wijk

12th International Planetary Workshop [IPPW2015-4104]

Current limitations for EDL

Why do we need an Aeroshell?

- MSL pushing the physical limits
 - Payload mass
 - Size of the vehicle

- Decelerate interplanetary probe
 - Robotic missions
 - Manned missions to Mars

Courtesy: NASA - IRVE-3

The Design Conditions

Max. G-load **5.2** g

Mass

10 tons

(10% for aeroshell)

Entry speed 7000 m/s

Courtesy: NASA - IRVE-3

Mission Phases

Entry conditions

Interplanetary orbit

Exit conditions

- Successful aerocapture
- Mars synchronous elliptical orbit

Entry conditions

Interplanetary orbit

Exit conditions

- Successful aerocapture
- Mars synchronous elliptical orbit

$$V_{entry} = 7000 \text{ m/s}$$

 V_{exit} < 4950 m/s

Chosen exit velocity:

$$V_{exit} = 4715.5 \, \text{m/s}$$

Safety vs Mass

 Minimize perigee raise burn

Figure 3-7: Exit velocity vs Δ V for r_p 200

Downward leg

 Peak loads on the thermal protection system

68.1 W/cm²

At time of research
20 W/cm²

Future research
150 W/cm²

Exit conditions

- Crucial
 - Density variations of 100 %
 - Skip out

Extensive control and tracking required

Exit conditions

- Crucial
 - Density variations of 100 %
 - Skip out

Extensive control and tracking required

Solutions

- Margins included
- Decoupled vertical and horizontal control

> Two mechanisms required

LIFT

$\mathbf{Control}\downarrow\mathbf{Lift}\rightarrow$	Trim Tab	Oblique	CG-offset	CG-offset
Thrusters		5		13
 Trim Tabs		6	10	
Control surfaces		7		
CG-offset	4	8		

Aerocapture - Design Solutions

Internal CG shift + thrusters

The Future

Aerocapture - Design Solutions

Internal CG shift + thrusters

External CG shift

The Future

External CG shift

Aerocapture - Flight Path controller

Vertical CG - shift during aerocapture

Mars Synchronous Orbit

Entry conditions

- Lowered Mars synchronous elliptical orbit

 - $\begin{array}{ll} \circ & V_{entry} = 4715.3 \text{ m/s} \\ \circ & \gamma_{entry} = -11.55 \text{ deg} \end{array}$

Goal conditions

- Target energy level
 - \circ Height \rightarrow h = 13 000 m
 - \circ Velocity \rightarrow V = 1.8 Mach

Entry conditions

- Lowered Mars synchronous elliptical orbit

 - $\begin{array}{ll} \circ & V_{entry} = 4715.3 \text{ m/s} \\ \circ & \gamma_{entry} = -11.55 \text{ deg} \end{array}$

Critical loads

- Maximum g-load
- Reaching target energy level

Goal conditions

- Target energy level
 - \circ Height \rightarrow h = 13 000 m
 - \circ Velocity \rightarrow V = 1.8 Mach

Critical loads

- Maximum g-load
- Reaching target energy level

Solution

- Include a margin
- Change the flight profile during the descent

1 2 3 4

Reaching the target energy level

Re-entry optimization

- Change the loads at critical points
 - After maximum g loads
 - Reduce lift, and also drag!
 - After skipping is impossible

Summary

The preliminary study has shown that external center of gravity shift is feasible.

Acknowledgements

Authors

Mario Coppola

Tijs de Boer

Wouter Dalmeijer

Rick van Loo

Alex Minich

Chris Möckel

Ibrahim Ouerghi

Surush Shabazi

Ren Smis

Erwin van Wijk

Supervisors

Dr. Herman Damveld

Stephen P. Sandford

Advisors

Neil Cheatwood

Robert Dillman

Alicia Dwyer Cianciolo

Richard Powell

